3,292 research outputs found

    TROM: A Testing-based Method for Finding Transcriptomic Similarity of Biological Samples

    Full text link
    Comparative transcriptomics has gained increasing popularity in genomic research thanks to the development of high-throughput technologies including microarray and next-generation RNA sequencing that have generated numerous transcriptomic data. An important question is to understand the conservation and differentiation of biological processes in different species. We propose a testing-based method TROM (Transcriptome Overlap Measure) for comparing transcriptomes within or between different species, and provide a different perspective to interpret transcriptomic similarity in contrast to traditional correlation analyses. Specifically, the TROM method focuses on identifying associated genes that capture molecular characteristics of biological samples, and subsequently comparing the biological samples by testing the overlap of their associated genes. We use simulation and real data studies to demonstrate that TROM is more powerful in identifying similar transcriptomes and more robust to stochastic gene expression noise than Pearson and Spearman correlations. We apply TROM to compare the developmental stages of six Drosophila species, C. elegans, S. purpuratus, D. rerio and mouse liver, and find interesting correspondence patterns that imply conserved gene expression programs in the development of these species. The TROM method is available as an R package on CRAN (http://cran.r-project.org/) with manuals and source codes available at http://www.stat.ucla.edu/ jingyi.li/software-and-data/trom.html

    MSIQ: Joint Modeling of Multiple RNA-seq Samples for Accurate Isoform Quantification

    Full text link
    Next-generation RNA sequencing (RNA-seq) technology has been widely used to assess full-length RNA isoform abundance in a high-throughput manner. RNA-seq data offer insight into gene expression levels and transcriptome structures, enabling us to better understand the regulation of gene expression and fundamental biological processes. Accurate isoform quantification from RNA-seq data is challenging due to the information loss in sequencing experiments. A recent accumulation of multiple RNA-seq data sets from the same tissue or cell type provides new opportunities to improve the accuracy of isoform quantification. However, existing statistical or computational methods for multiple RNA-seq samples either pool the samples into one sample or assign equal weights to the samples when estimating isoform abundance. These methods ignore the possible heterogeneity in the quality of different samples and could result in biased and unrobust estimates. In this article, we develop a method, which we call "joint modeling of multiple RNA-seq samples for accurate isoform quantification" (MSIQ), for more accurate and robust isoform quantification by integrating multiple RNA-seq samples under a Bayesian framework. Our method aims to (1) identify a consistent group of samples with homogeneous quality and (2) improve isoform quantification accuracy by jointly modeling multiple RNA-seq samples by allowing for higher weights on the consistent group. We show that MSIQ provides a consistent estimator of isoform abundance, and we demonstrate the accuracy and effectiveness of MSIQ compared with alternative methods through simulation studies on D. melanogaster genes. We justify MSIQ's advantages over existing approaches via application studies on real RNA-seq data from human embryonic stem cells, brain tissues, and the HepG2 immortalized cell line

    Slug-based epithelial-mesenchymal transition gene signature is associated with prolonged time to recurrence in glioblastoma

    Get PDF
    Background
We previously identified a precise stage-associated gene expression signature of coordinately expressed genes, including the transcription factor Slug (SNAI2) and other epithelial mesenchymal transition (EMT) markers, present in samples from publicly available gene expression datasets in multiple cancer types. The expression levels of the co-expressed genes vary in a continuous and coordinate manner across the samples, ranging from absence of expression to strong co-expression of all genes. These data suggest that tumor cells may pass through an EMT like process of mesenchymal transition to varying degrees. 

Findings
Here we show that this signature in glioblastoma multiforme (GBM) is associated with time to recurrence following initial treatment. By analyzing data from The Cancer Genome Atlas (TCGA), we found that GBM patients who responded to therapy and had long time to recurrence had low levels of the signature in their tumor samples (P = 3x10^-7^). We also found that the signature is strongly correlated in gliomas with the putative stem cell marker CD44, and is highly enriched among the differentially expressed genes in glioblastomas vs. lower grade gliomas. 

Conclusions 
Our results suggest that long delay before tumor recurrence is associated with absence of the mesenchymal transition signature, raising the possibility that inhibiting this transition might improve the durability of therapy in glioma patients

    Functional Genomics Profiling of Bladder Urothelial Carcinoma MicroRNAome as a Potential Biomarker.

    Get PDF
    Though bladder urothelial carcinoma is the most common form of bladder cancer, advances in its diagnosis and treatment have been modest in the past few decades. To evaluate miRNAs as putative disease markers for bladder urothelial carcinoma, this study develops a process to identify dysregulated miRNAs in cancer patients and potentially stratify patients based on the association of their microRNAome phenotype to genomic alterations. Using RNA sequencing data for 409 patients from the Cancer Genome Atlas, we examined miRNA differential expression between cancer and normal tissues and associated differentially expressed miRNAs with patient survival and clinical variables. We then correlated miRNA expressions with genomic alterations using the Wilcoxon test and REVEALER. We found a panel of six miRNAs dysregulated in bladder cancer and exhibited correlations to patient survival. We also performed differential expression analysis and clinical variable correlations to identify miRNAs associated with tobacco smoking, the most important risk factor for bladder cancer. Two miRNAs, miR-323a and miR-431, were differentially expressed in smoking patients compared to nonsmoking patients and were associated with primary tumor size. Functional studies of these miRNAs and the genomic features we identified for potential stratification may reveal underlying mechanisms of bladder cancer carcinogenesis and further diagnosis and treatment methods for urothelial bladder carcinoma

    Urban Air Mobility System Testbed Using CAVE Virtual Reality Environment

    Get PDF
    Urban Air Mobility (UAM) refers to a system of air passenger and small cargo transportation within an urban area. The UAM framework also includes other urban Unmanned Aerial Systems (UAS) services that will be supported by a mix of onboard, ground, piloted, and autonomous operations. Over the past few years UAM research has gained wide interest from companies and federal agencies as an on-demand innovative transportation option that can help reduce traffic congestion and pollution as well as increase mobility in metropolitan areas. The concepts of UAM/UAS operation in the National Airspace System (NAS) remains an active area of research to ensure safe and efficient operations. With new developments in smart vehicle design and infrastructure for air traffic management, there is a need for methods to integrate and test various components of the UAM framework. In this work, we report on the development of a virtual reality (VR) testbed using the Cave Automatic Virtual Environment (CAVE) technology for human-automation teaming and airspace operation research of UAM. Using a four-wall projection system with motion capture, the CAVE provides an immersive virtual environment with real-time full body tracking capability. We created a virtual environment consisting of San Francisco city and a vertical take-off-and-landing passenger aircraft that can fly between a downtown location and the San Francisco International Airport. The aircraft can be operated autonomously or manually by a single pilot who maneuvers the aircraft using a flight control joystick. The interior of the aircraft includes a virtual cockpit display with vehicle heading, location, and speed information. The system can record simulation events and flight data for post-processing. The system parameters are customizable for different flight scenarios; hence, the CAVE VR testbed provides a flexible method for development and evaluation of UAM framework

    Modeling and analysis of RNA-seq data: a review from a statistical perspective

    Full text link
    Background: Since the invention of next-generation RNA sequencing (RNA-seq) technologies, they have become a powerful tool to study the presence and quantity of RNA molecules in biological samples and have revolutionized transcriptomic studies. The analysis of RNA-seq data at four different levels (samples, genes, transcripts, and exons) involve multiple statistical and computational questions, some of which remain challenging up to date. Results: We review RNA-seq analysis tools at the sample, gene, transcript, and exon levels from a statistical perspective. We also highlight the biological and statistical questions of most practical considerations. Conclusion: The development of statistical and computational methods for analyzing RNA- seq data has made significant advances in the past decade. However, methods developed to answer the same biological question often rely on diverse statical models and exhibit different performance under different scenarios. This review discusses and compares multiple commonly used statistical models regarding their assumptions, in the hope of helping users select appropriate methods as needed, as well as assisting developers for future method development
    corecore